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Non-Gaussian probability distribution functions from maximum-entropy-principle considerations
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In this work we develop the recently suggested concept of superstatistics@C. Beck and E.G.D. Cohen,
Physica A322, 267 ~2003!#, face the problem of devising a viable way for estimating the correct statistics for
a system in the absence of sufficient knowledge of its microscopical dynamics, and suggest to solve it through
the maximum-entropy principle. As an example, we deduce the probability distribution function for velocity
fluctuations in turbulent fluids, which is slightly different from the form suggested by C. Beck@Phys. Rev. Lett.
87, 180601~2001!#.
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Nonextensive statistical mechanics has been raising
siderable interest in past 15 years. However, while there
universal consensus about its most famous prediction,
the ubiquitous existence in nature of power-law probabi
distribution functions~PDFs!, the soundness of the theore
cal foundation on which is based—the generalized definit
of entropy@1#—has been questioned by several authors.
quote here, e.g., the paper@2# which dealt, in particular, with
contradictions between the theory’s predictions and ther
dynamical constraints.

The paper@3# started from these critiques but focus
more on the information-theoretic aspect, suggesting
Tsallis’ entropy should be regarded merely as a practical
for making predictions in the presence of a reduced amo
of information about the system. Indeed, the need for res
ing to modified definitions of the informational entropy whe
the knowledge about the states of the system is insuffici
is well known in statistics and has been extensively poin
out in Ref.@4#, and references therein.

Quite recently, Sattin and Salasnich@5#—starting from an
earlier work by Beck@6#—and, in a more formal and rigor
ous way, Beck and Cohen@7# demonstrated, without direc
reference to any definition of entropy, that Tsallis’ statistics
just a particular case of an infinite class of statistics~hence
the name ‘‘superstatistics’’!. All the elements of the class ar
characterized by one or more parameters, and reduce t
dinary Maxwell-Boltzmann statistics for particular values
the parameters. Beck and Cohen started from a mode
dynamical system, a Brownian particle moving according
a Langevin equation, where the noises and frictiong terms
are allowed to fluctuate, to arrive at the famous equation

P~E!5KE
0

`

e2bEf ~b!db. ~1!

Here,P(E) is the PDF for the system of being in the state
‘‘energy’’ E, b is a fluctuating parameter~generalized inverse
temperature!, which in the present formulation is function o
s, g, and f (b) is the PDF for the realization of the particu
lar valueb; e2bE is the usual Boltzmann factor. Equation~1!
is more general than suggested by the Brownian part
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model. Indeed, it can be written for any systemS interacting
with a fluctuating environmentB; henceP(E) is a weighted
average of the standard Boltzmann statistics over differ
realizations of the interaction between the system and
environment, quantified byf (b). Notice that the existence o
finite fluctuations in the environment is strictly correlate
with finite-size effects of the environment itself; indeed, t
result that Tsallis statistics can arise within the framework
a system interacting with a finite thermal bath was recen
reported by Aringazin and Mazhitov@8#, and it had already
been suggested much earlier by Plastino and Plastino@9#.

The physical content of the theory, thus, shifts from t
entropic indexq to the PDF f (b). Of course, the explicit
expression forf (b) must vary for any single problem, con
strained just by some rather intuitive criteria~normalizability,
etc.!; Beck and Cohen give several possible examples
functions which are potential candidates forf (b). However,
a simple criterion able to guide the user towards a plaus
functional form forf, lacking a more detailed knowledge o
the underlying microscopical details, would be very satis
ing. But such a criterion is readily available: it is the we
known Jaynes’ maximum-entropy principle. In this case,
system about which we do not have the proper knowledg
no longer S but the environmentB itself, and f (b) is a
measure of the probability ofB of occupying a state in an
abstract one-dimensional space parametrized byb.

Lacking any further information, the most probable re
ization of f (b) will be the one that maximizes~Shannon!
entropyS( f )52* f ln fdb with suitable constraints.

In this paper we present a straightforward application
this principle to an important example, namely, the PDF
velocity fluctuations in turbulent flows@10#. This accurate
experimental measurement is thought to be one of the st
gest evidences in support of Tsallis’ theory, since the emp
cal PDF appear very well matched by power laws. In t
work we suggest instead that the true curve can be very c
numerically, but rather different in its analytical expressio
from a power law. Indeed, further experimental investig
tions of turbulent flows are now suggesting the existence
small deviation from pure power laws~experiments of Jung
and Swinney, cited in Ref.@7#!. Recent work by Aringazin
and Mazhitov@11# deal with the attempt of theoretically re
covering the new accurate experimental distributions
©2003 The American Physical Society02-1
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fluid particle accelerations. In this work, instead, we w
consider only fluid velocity differences.

As a first test case, let us suppose of knowing anyth
aboutf but the average value of the inverse temperature

^b&5E b f ~b!db. ~2!

The most probablef extremizes the functional

F52E f ln f db2lE f bdb, ~3!

and the solution is the Boltzmann-like function

f ~b!5 f 0 exp~2lb!, ~4!

wherel is the Lagrange multiplier. Such an expression w
obtained, by example, in Ref.@12#, from which the original
idea of entropy maximization was taken. It reads sligh
different from theG ~or x2) distribution originally devised
by Beck @6# to recover power-law PDF. If we substitutef of
Eq. ~4! into Eq. ~1!, we get

P~E!}
1

E1l
, ~5!

which is not a physically acceptable solution, sinceP(E)
must be normalizable.

In order to make a step beyond this rough scheme i
necessary to input more information within the model. We
it starting from the same premises as Beck’s@6# but diverg-
ing at just the next step: in fact, he definesb}e rt, wheree r
is the energy dissipation rate of the fluid on microscopi
scale andt is the typical energy transfer time. We note th
e rt has units of energy, not of (energy)21, and a more in-
tuitive way of writing this relation should beb'(e rt)21.
However, the inverse of a sum of squares of random v
ables does not yield ax2-distributed random variable, henc
Beck is forced to reestablish the correct dimensions by m
tiplying by the constantL, with the units of (speed)4. Thus,
a characteristic speedL1/4 has entered the calculation
whose physical interpretation remains obscure. Of cou
Beck was forced to do this assumption because of the so
agreement with Tsallis’ theory. Now, we are free from th
constraint, and can allow for more natural choices, altho
we must agree that a certain arbitrariness in the choice o
physically meaningful variables is unavoidable within th
context.

To start with, we shift fromb parameter toT51/b. T,
which has units of energy is a more convenient variable
explained above. We can write the equivalent of Eq.~1! in
terms of the new parameter; furthermore, in order to adh
to existing literature, it is convenient to use a generaliz
velocity instead of energyE5u2/2. Therefore Eq.~1! be-
comes

p~u!5E dTA 1

2pT
expS 2

u2

2TDg~T!. ~6!
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Again, we follow Beck’s recipe: the parameterT is written in
terms of fluctuating Kolgomorov velocitiesui

T5
T0

3 (
i 51,2,3

ui
2 , ~7!

whereT0 is a constant. We stress that the right-hand side
the previous equation and that of Eq.~28! in Ref. @6# are the
same, although the left-hand side’s are each the invers
the other. This is due to our discarding the artificial const
L. T0, conversely, has a straightforward physical interpre
tion as average thermal energy.

The PDF g(T) can be rewritten as a function ofu’s:
g8(u1 ,u2 ,u3)[g8(u)↔g(T). The maximum-entropy prin-
ciple imposes of extremizing

F52g8~u!ln@g8~u!#2
1

uM
2 ~u1

21u2
21u3

2!g8~u!, ~8!

where 1/uM
2 is the Lagrange multiplier corresponding to th

fact that we fix the average kinetic energy. The solution
obviously, g8(u)5C exp@2(u1

21u2
21u3

2)/u0
2#. From here, re-

versing toT variable,

g~T!5KT1/2expS 2
3T

2T0
D . ~9!

The termT1/2 comes from the volume element,C,K are nor-
malization constants and we have rescaled velocities s
that uM

2 [2/3. Notice that Eq.~9! is a G distribution and
could be obtained straightforwardly from Eq.~7! by assum-
ing from the start that theui were normal random variables
just as done by Beck.

Let us now substitute Eq.~9! into Eq. ~6!, we get

p~u!5K8E
0

`

expS 2
u2

2T
2

3T

2T0
DdT. ~10!

The explicitly normalized solution reads

p~u!PW5
1

ûp

u

û
K1S u

û
D S û5AT0

3 D , ~11!

and K1 is the BesselK function of order 1. This result ap
pears rather different from usual power laws. Indeed,
chose to plot in Fig. 1 this curve together with the best fitti
curve found by Beck for the velocity PDF:

p~u!Beck5
1

Zq

1

@11~q21!b̃Cuuu2a#1/(q21)

~q'1.1,a'0.9!. ~12!

~See dashed line in Fig. 1 of Ref.@6#.! On the whole, the two
curves match rather closely. Some differences appear at
u’s.

Since the original experimental datapexpt are not avail-
able, we cannot directly compare with them the goodnes
2-2
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our fit. A good insight comes, however, by plotting the re
tive differenceD5(pBeck2pPW)/pBeck @Fig. 2, pPW is our
solution, given in Eq. ~11!#. The quantity D15(pBeck
2pexpt)/pBeck appears plotted in Fig. 2 of Ref.@10#. If D and
D1 agree,pPW5pexpt. It appears that our fit slightly overes
timates experiment atu'0, but for the same amount aspBeck
does underestimate it. On the whole, the agreement with
periment is remarkable. We remark that, as only adjusta
parameter, we used the hypothesis thatT is of form ~7! with
the index ranging from 1 to 3. The equivalent ofa parameter
used by Beck does not enter our calculations. Thus, we h
realized an economy in our way of modeling the data.

We call the reader’s attention to the fact that, in his Fig
Beck studied at once~i! velocity spatial differences and~ii !
accelerations. We, instead, considered only the former qu
tity, and it is possible to see that the latter cannot be rep
duced by the present treatment, even allowing for a vary
number of Kolmogorov velocities in Eq.~7!. This must be
traced back to the fact that nowg(T) is no longer a good
weight function, but we must define an equivalent ofT, de-
fining the ‘‘average acceleration’’ of the system.

Finally, we point to two important issues.

FIG. 1. Solid line,p(u)Beck from Eq. ~12!; dashed line,p(u)PW

from present work@Eq. ~11!#. The adjustable parameters have be
chosen so that the curves have the same variance.
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~i! We have the asymptotic trendxK1(x)→x1/2exp(2x)
(x→`), that is, we have no power-law decay. Notwithstan
ing this, our curve nicely fits data that have been previou
considered as stemming from a power-law PDF. The rea
lies in the finiteu-range sampled and therefore calls for
inherent ambiguity in this kind of studies, related to fini
experimental scans: unless one is sure of investigating
true asymptotic region, one can never be completely co
dent about the fitting curve used.

~ii ! As reported above, all superstatistics must collapse
the single Boltzmann statistics whenq→1, that is, differ-
ences between different models are at leastO(q21). Since,
in this case, we are dealing with a parameter not far fr
unity, q'1.1, it is to be expected that any two reasona
models would give close results.

In conclusion, the use of the concept of superstatis
together with maximum-entropy principle appears to be
efficient way of estimating statistical properties in gene
systems using a minimal amount of information.

The author wishes to thank A. Rapisarda, C. Beck, and
Luzzi for useful comments and suggestions.

FIG. 2. The relative difference of the two curves above:D
5(pBeck2pPW)/pBeck vs u, wherepBeck is from Eq. ~12! and pPW

is from Eq. ~11!. This figure should be compared with Fig. 2 o
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