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Non-Gaussian probability distribution functions from maximum-entropy-principle considerations
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In this work we develop the recently suggested concept of superstafi€tidBeck and E.G.D. Cohen,
Physica A322 267 (2003], face the problem of devising a viable way for estimating the correct statistics for
a system in the absence of sufficient knowledge of its microscopical dynamics, and suggest to solve it through
the maximume-entropy principle. As an example, we deduce the probability distribution function for velocity
fluctuations in turbulent fluids, which is slightly different from the form suggested by C. Bitks. Rev. Lett.
87, 180601(2001)].
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Nonextensive statistical mechanics has been raising comodel. Indeed, it can be written for any syst&ninteracting
siderable interest in past 15 years. However, while there is with a fluctuating environmer®; henceP(E) is a weighted
universal consensus about its most famous prediction, i.eaverage of the standard Boltzmann statistics over different
the ubiquitous existence in nature of power-law probabilityrealizations of the interaction between the system and its
distribution functions(PDF9, the soundness of the theoreti- enyironment, quantified bf(3). Notice that the existence of
cal foundation on which is based—the generalized definitioninjte fluctuations in the environment is strictly correlated
of entropy[1}—has been questioned by several authors. Weyith finite-size effects of the environment itself: indeed, the
quote here, e.g., the pape] which dealt, in particular, with  oq it that Tsallis statistics can arise within the framework of
contradictions between the theory’s predictions and thermog qygtem interacting with a finite thermal bath was recently
dynamical constraints. reported by Aringazin and Mazhitd\8], and it had already

more oh the mformation-iheorete. ssped:. suggestng thalS" Suggested much eatlier by Plastino and Plafsiio
pect, sugg g The physical content of the theory, thus, shifts from the

Tsallis’ entropy should be regarded merely as a practical tool T -
for making predictions in the presence of a reduced amourlt"troPIc indexq to the PDFf(p). Of course, the explicit

of information about the system. Indeed, the need for resor€XPression forf () must vary for any single problem, con-

ing to modified definitions of the informational entropy when Strained just by some rather intuitive critefformalizability,

the knowledge about the states of the system is insufficien€!C); Beck and Cohen give several possible examples of

is well known in statistics and has been extensively pointedunctions which are potential candidates f¢3). However,

out in Ref.[4], and references therein. a simple criterion able to guide the user towards a plausible
Quite recently, Sattin and Salasni@]—starting from an  functional form forf, lacking a more detailed knowledge of

earlier work by Bec6]—and, in a more formal and rigor- the underlying microscopical details, would be very satisfy-

ous way, Beck and Coh€dY] demonstrated, without direct ing. But such a criterion is readily available: it is the well

reference to any definition of entropy, that Tsallis’ statistics isknown Jaynes’ maximum-entropy principle. In this case, the

just a particular case of an infinite class of statistitance  system about which we do not have the proper knowledge is

the name “superstatisticg. All the elements of the class are no longery but the environmenB itself, and f(3) is a

characterized by one or more parameters, and reduce to Qfeasure of the probability d8 of occupying a state in an

dinary Maxwell-Boltzmann statistics for particular values of abstract one-dimensional space parametrizeg by

the parameters. Beck and Cohen started from a model of |acking any further information, the most probable real-

dynamical system, a Brownian particle moving according toization of f(3) will be the one that maximizeéShannoh

a Langevin equation, where the noiseand frictiony terms  entropyS(f)= — [ f In fd8 with suitable constraints.

are allowed to fluctuate, to arrive at the famous equation In this paper we present a straightforward application of
. this principle to an important example, namely, the PDF of
P(E)=Kf e PEF(B)dB. (1) veloci_ty fluctuations in turbt_JIent flow§10]. This accurate
0 experimental measurement is thought to be one of the stron-

gest evidences in support of Tsallis’ theory, since the empiri-
Here,P(E) is the PDF for the system of being in the state ofcal PDF appear very well matched by power laws. In this
“energy” E, B is a fluctuating parametégeneralized inverse work we suggest instead that the true curve can be very close
temperaturg which in the present formulation is function of numerically, but rather different in its analytical expression,
o, v, andf(p) is the PDF for the realization of the particu- from a power law. Indeed, further experimental investiga-
lar valueB; e #E is the usual Boltzmann factor. Equatiél)  tions of turbulent flows are now suggesting the existence of
is more general than suggested by the Brownian particlemall deviation from pure power lawgxperiments of Jung

and Swinney, cited in Ref.7]). Recent work by Aringazin

and Mazhitov[11] deal with the attempt of theoretically re-

*Electronic address: fabio.sattin@igi.cnr.it covering the new accurate experimental distributions for
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fluid particle accelerations. In this work, instead, we will Again, we follow Beck’s recipe: the paramefers written in

consider only fluid velocity differences. terms of fluctuating Kolgomorov velocitias
As a first test case, let us suppose of knowing anything
i T
aboutf but the average value of the inverse temperature T— 0 E uiZ’ )
3 iZT23
<'8>:f BH(B)AB. ) whereT, is a constant. We stress that the right-hand side of
the previous equation and that of E88) in Ref.[6] are the
The most probablé extremizes the functional same, although the left-hand side’s are each the inverse of
the other. This is due to our discarding the artificial constant
_J fin fdﬁ_)‘f fBdg, 3) A To, conversely, has a straightforward physical interpreta-
tion as average thermal energy.
o . . The PDFg(T) can be rewritten as a function af's:
and the solution is the Boltzmann-like function g’ (uy,U,,u3)=g’ (u)—g(T). The maximum-entropy prin-
ciple imposes of extremizing
f(B)=foexp(—\p), 4
1
where\ is the Lagrange multiplier. Such an expression was F=—g'(win[g'(u)]— —z(uf+ u§+ ui)g’(u), (8
obtained, by example, in Rdf12], from which the original Um

idea of entropy maximization was taken. It reads slightly . o )

different from thel” (or y2) distribution originally devised ~Where iy is the Lagrange multiplier corresponding to the

by Beck[6] to recover power-law PDF. If we substitutef fact that we fix the average kinetic energy The solution is,

Eq. (4) into Eq. (1), we get obviously, g’ (u)=C exd — (u1+u2+u3)/u0]. From here, re-
versing toT variable,

P(E)* =+ ©)

3T
E+N\ g(T)zKTleexp( - —) 9)
2T,

which is not a physically acceptable solution, siregE)
must be normalizable.

In order to make a step beyond this rough scheme it i
necessary to input more information within the model. We do
it starting from the same premises as Bedl6$ but diverg-
ing at just the next step: in fact, he defin@s ¢, 7, wheree,
is the energy dissipation rate of the fluid on microscopica
scale andr is the typical energy transfer time. We note that
¢, 7 has units of energy, not of (energy), and a more in-

p(u)y=K’ f ex;{

The termTY2 comes from the volume elemer@,K are nor-
énallzatlon constants and we have rescaled velocities such
that uM—2/3 Notice that Eq.(9) is a I' distribution and
could be obtained straightforwardly from E) by assum-
ing from the start that the; were normal random variables,
||ust as done by Beck.

Let us now substitute Eq9) into Eq. (6), we get

tuitive way of writing this relation should b@~ (e, 7) 1.
However, the inverse of a sum of squares of random vari-
ables does not yield g2-distributed random variable, hence
Beck is forced to reestablish the correct dimensions by muIThe explicitly normalized solution reads
tiplying by the constant\, with the units of (speed) Thus,
a characteristic spee(zkl"‘ has entered the calculations, :i (A: \/E)

. . . - P(Wpw== u ) (13)
whose physical interpretation remains obscure. Of course, umr 3
Beck was forced to do this assumption because of the sought
agreement with Tsallis’ theory. Now, we are free from thisandK; is the BesseK function of order 1. This result ap-
constraint, and can allow for more natural choices, althougipears rather different from usual power laws. Indeed, we
we must agree that a certain arbitrariness in the choice of thehose to plot in Fig. 1 this curve together with the best fitting
physically meaningful variables is unavoidable within this curve found by Beck for the velocity PDF:
context.

u u
TK]_ ~
u u

To start with, we shift fromg parameter tolr=1/8. T, 1 1
which has units of energy is a more convenient variable, as p(U)Beck—Z— 7 2a1/(g—1)
; : . : a[1+(q—1)BClul*]
explained above. We can write the equivalent of Eqg.in
terms of the new parameter; furthermore, in order to adhere (q~1.1,a~0.9). (12

to existing literature, it is convenient to use a generalized

velocity instead of energf =u®/2. Therefore Eq(1) be-  (see dashed line in Fig. 1 of Ré6].) On the whole, the two
comes curves match rather closely. Some differences appear at low
u’s.

p(u)—f dT / ex% )g(T) ©6) Since the original experimental Qamxpt are not avail-

able, we cannot directly compare with them the goodness of

032102-2



BRIEF REPORTS PHYSICAL REVIEW B8, 032102 (2003

log,y p A
-05 ~ ol
- 0.75 = )
AN 0.05
-1 J
- 125 ~ N 1 2 3 5 1
15 “ - 0.05
- 175 -0.1
- 0.15
u
1 2 3 4 S
=225 N -0.2
FIG. 1. Solid line,p(u)geck from Eq. (12); dashed linep(u)py FIG. 2. The relative difference of the two curves above:
from present worEq. (11)]. The adjustable parameters have been= (Pgeck~ Ppw)/ Pgeck VS U, Wherepgec is from Eq.(12) and ppy
chosen so that the curves have the same variance. is from Eg. (11). This figure should be compared with Fig. 2 of
Ref.[10].

our fit. A good insight comes, however, by plotting the rela- (i) We have the asymptotic trend<,(x) —x*2exp(=x)

tive differenceA =(pgeck— Ppw)/Paeck [FI9- 2, Ppw 1S OUr () that is, we have no power-law decay. Notwithstand-
solution, given in Eq.(11)]. The quantity Ay=(Pgeck  ing this, our curve nicely fits data that have been previously
~ Pexp)/ Peeck @ppears plotted in Fig. 2 of ReflO]. If A and  considered as stemming from a power-law PDF. The reason
A, agree ppw=Pexpr- It appears that our fit slightly overes- |jies in the finiteu-range sampled and therefore calls for an
timates experiment at~0, but for the same amount §eck  inherent ambiguity in this kind of studies, related to finite
does underestimate it. On the whole, the agreement with eX%yperimental scans: unless one is sure of investigating the

periment is remarkable. We remark that, as only adjustablgye asymptotic region, one can never be completely confi-
parameter, we used the hypothesis fhas of form (7) with  gent about the fitting curve used.

the index ranging from 1 to 3. The equivalentparameter (i) As reported above, all superstatistics must collapse to
used by Beck does not enter our calculations. Thus, we havge single Boltzmann statistics whep—1, that is, differ-
realized an economy in our way of modeling the data. ences between different models are at l&@j—1). Since,

We call the reader’s attention to the fact that, in his Fig. 1,ijy this case, we are dealing with a parameter not far from
Beck studied at oncé) velocity spatial differences ani) unity, g~1.1, it is to be expected that any two reasonable
accelerations. We, instead, considered only the former quannodels would give close results.
tity, and it is possible to see that the latter cannot be repro- |, conclusion, the use of the concept of superstatistics
duced by the present treatment, even aIIowing for a varyingogether with maximum-entropy principle appears to be an
number of Kolmogorov velocities in Eq7). This must be  efficient way of estimating statistical properties in general

traced back to the fact that nog(T) is no longer a good  systems using a minimal amount of information.
weight function, but we must define an equivalentTofde-

fining the “average acceleration” of the system. The author wishes to thank A. Rapisarda, C. Beck, and R.
Finally, we point to two important issues. Luzzi for useful comments and suggestions.
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